toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Hofer, J.A.; Ginzburg, M.; Bengio, S.; Haberkorn, N. url  doi
openurl 
  Title Nanocrystalline superconducting γ-Mo2N ultra-thin films for single photon detectors Type Journal Article
  Year 2022 Publication Materials Science and Engineering: B Abbreviated Journal Materials Science and Engineering: B  
  Volume 275 Issue Pages 115499  
  Keywords  
  Abstract We analyze the influence of the surface passivation produced by oxides on the superconducting properties of γ-Mo2N ultra-thin films. The superconducting critical temperature of thin films grown directly on Si (100) with those using a buffer and a capping layer of AlN are compared. The results show that the cover layer avoids the presence of surface oxides, maximizing the superconducting critical temperature for films with thicknesses of a few nanometers. We characterize the flux-flow instability measuring current-voltage curves in a 6.4 nm thick Mo2N film with a superconducting critical temperature of 6.4 K. The data is analyzed using the Larkin and Ovchinnikov model. Considering self-heating effects due to finite heat removal from the substrate, we determine a fast quasiparticle relaxation time ≈ 45 ps. This value is promising for its applications in single-photon detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-5107 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number BT @ pedrazp @ Serial 871  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: