|   | 
Author Franco, D.G.; Carbonio, R.E.; Nieva, G.
Title Magnetic Properties of the Double Perovskites LaPbMSbO6 (M = Mn, Co, and Ni) Type Journal Article
Year 2013 Publication IEEE Transactions on Magnetics Abbreviated Journal IEEE Trans. Magn.
Volume 49 Issue 8 Pages 4594-4597
Keywords X-ray diffraction; cobalt compounds; lanthanum compounds; lead compounds; magnetisation; manganese compounds; nickel compounds; paramagnetic-antiferromagnetic transitions; space groups; superexchange interactions; LaPbCoSbO6; LaPbMnSbO6; LaPbNiSbO6; M2+ distribution; Rietveld analysis; Sb5+ distribution; X-ray powder diffraction pattern; antiferromagnetic coupling; antiferromagnetic transition; aqueous synthetic route; disorder; double perovskites; ferrimagnetic characteristics; interaction paths; magnetic ions; magnetic properties; monoclinic crystals; octahedral sites; polycrystals; space group P2 1/n; super-superexchange paths; Ions; Magnetic properties; Magnetization; Manganese; Nickel; Temperature measurement; X-ray diffraction; Antiferromagnetic materials; transition metal compounds
Abstract New double perovskites LaPbMSbO6, where M2+ = Mn2+, Co2+, and Ni2+, were synthesized as polycrystals by an aqueous synthetic route at temperatures below 1000 °C. All samples are monoclinic, space group P21/n, as it is observed from Rietveld analysis of X-ray powder diffraction patterns. The distribution of M2+ and Sb5+ among the two octahedral sites have 3% of disorder for M2+ = Ni2+, whereas for M2+ = Mn2+ and Co2+ less disorder is found. The three samples have an antiferromagnetic transition, due to the antiferromagnetic coupling between M2 + through super-superexchange paths M2+-O2--Sb5+-O2--M2+. Transition temperatures are low: 8, 10 and 17 K for Mn2+, Co2+, and Ni2 + respectively, as a consequence of the relatively long distances between the magnetic ions M2+. Besides, for LaPbMnSbO6 a small transition at 45 K was found, with ferrimagnetic characteristics, possibly as a consequence of a small disorder between Mn2+ and Sb5+. This disorder would give additional and shorter interaction paths: superexchange Mn2+-O2--Mn2+.
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9464 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number BT @ pedrazp @ Serial 669
Permanent link to this record