Home | << 1 >> |
![]() |
Record | |||||
---|---|---|---|---|---|
Author | Franco, D.G.; Carbonio, R.E.; Nieva, G. | ||||
Title | Change in the Magnetic Domain Alignment Process at the Onset of a Frustrated Magnetic State in Ferrimagnetic La2Ni(Ni1/3Sb2/3)O6 Double Perovskite | Type | Journal Article | ||
Year | 2013 | Publication | IEEE Transactions on Magnetics | Abbreviated Journal | IEEE Trans. Magn. |
Volume | 49 | Issue | 8 | Pages | 4656-4659 |
Keywords | coercive force; exchange interactions (electron); ferrimagnetic materials; frustration; magnetic domain walls; magnetic hysteresis; magnetic transitions; LaNi(Ni0.33Sb0.67)O6; applied magnetic field; coercive field; domain wall pinning; ferrimagnetic double perovskite; ferrimagnetic order transition; frustrated magnetic state; hysteresis data; low temperature regime; magnetic domain alignment process; magnetic exchange interactions; magnetization hysteresis loops; temperature dependence; Magnetic domain walls; Magnetic domains; Magnetic hysteresis; Magnetization; Nickel; Temperature distribution; Temperature measurement; Ferrimagnetic materials; magnetic analysis; magnetic domain walls; magnetic hysteresis | ||||
Abstract ![]() |
We have performed a combined study of magnetization hysteresis loops and time dependence of the magnetization in a broad temperature range for the ferrimagnetic La2Ni(Ni1/3Sb2/3)O6 double perovskite. This material has a ferrimagnetic order transition at ~100 K and at lower temperatures (~20 K) shows the signature of a frustrated state due to the presence of two competing magnetic exchange interactions. The temperature dependence of the coercive field shows an important upturn below the point where the frustrated state sets in. The use of hysteresis data, magnetization versus applied magnetic field, together with the magnetization versus time data provides a unique opportunity to distinguish between different scenarios for the low temperature regime. From our analysis, a strong domain wall pinning results in the best scenario for the low temperature regime. For temperatures larger than 20 K, the adequate scenario seems to correspond to a weak domain wall pinning. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 0018-9464 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | BT @ pedrazp @ | Serial | 668 | ||
Permanent link to this record |