toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hofer, J.A.; Ginzburg, M.; Bengio, S.; Haberkorn, N. url  doi
openurl 
  Title Nanocrystalline superconducting γ-Mo2N ultra-thin films for single photon detectors Type Journal Article
  Year 2022 Publication Materials Science and Engineering: B Abbreviated Journal Materials Science and Engineering: B  
  Volume 275 Issue Pages 115499  
  Keywords (up)  
  Abstract We analyze the influence of the surface passivation produced by oxides on the superconducting properties of γ-Mo2N ultra-thin films. The superconducting critical temperature of thin films grown directly on Si (100) with those using a buffer and a capping layer of AlN are compared. The results show that the cover layer avoids the presence of surface oxides, maximizing the superconducting critical temperature for films with thicknesses of a few nanometers. We characterize the flux-flow instability measuring current-voltage curves in a 6.4 nm thick Mo2N film with a superconducting critical temperature of 6.4 K. The data is analyzed using the Larkin and Ovchinnikov model. Considering self-heating effects due to finite heat removal from the substrate, we determine a fast quasiparticle relaxation time ≈ 45 ps. This value is promising for its applications in single-photon detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-5107 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number BT @ pedrazp @ Serial 871  
Permanent link to this record
 

 
Author Navarro, H.; Sirena, M.; Kim, J.; Haberkorn, N. url  doi
openurl 
  Title Josephson coupling in high-Tc superconducting junctions using ultra-thin BaTiO3 barriers Type Journal Article
  Year 2020 Publication Materials Science and Engineering: B Abbreviated Journal Mater. Sci. Eng. B  
  Volume 262 Issue Pages 114714  
  Keywords (up) Josephson junctionsHigh-Tc superconductorsThin films  
  Abstract We study the electrical transport of vertically-stacked Josephson tunnel junctions using GdBa2Cu3O7−δ electrodes and a BaTiO3 barrier with thicknesses between 1 nm and 3 nm. Current-voltage measurements at low temperatures show a Josephson coupling for junctions with BaTiO3 barriers of 1 nm and 2 nm. Reducing the barrier thickness bellow a critical thickness seems to suppress the ferroelectric nature of the BaTiO3. The Josephson coupling temperature reduces as the barrier thicknesses increases. The Josephson energies at 12 K are of ≈ 1.5 mV and ≈ 7.5 mV for BaTiO3 barriers of 1 nm and 2 nm, respectively. Fraunhofer patterns are consistent with fluctuations in the critical current due to structural inhomogeneities in the barriers. Our results are promising for the development of Josephson junctions using high-Tc electrodes with energy gaps much higher than those usually present in conventional low-temperature superconductors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-5107 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number BT @ pedrazp @ Serial 858  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: