|
Abstract |
We studied the magnetic, transport, and thermodynamic properties of the alloy CeTi 1- x Sc x Ge in order to shed some light into the origin of the exceptionally large antiferromagnetic (AFM) ordering temperature T N = 47 K in pure CeScGe. We observed a complex magnetic phase diagram, which present an interesting dichotomy: Despite strong changes in the nature of the ordered state, from ferromagnetic (FM) for x ≤ 0.55 to AFM for x > 0.55, the ordering temperature increases smoothly and continuously from T C = 7 K at x = 0.25 to T N = 47 K at x = 1. Within the AFM regime we observe a metamagnetic transition at a critical field increasing from H = 0 at x ≈ 0.55 to μ 0 * H ≈ 6 Tesla at x = 1. Furthermore a second transition appears at T L ≤ T N for x ≥ 0.65. In contrast to observations in CeRh 2 Si 2 or CeRh 3 B 2 , we found no evidence for a strong hybridization of the 4f electrons at large Sc contents. Therefore the exceptionally large T N of CeScGe could be attributed to the unusually strong RKKY interaction in this type of compounds. |
|