|
Neerinck, D., K. Temst, M. Baert, E. Osquiguil, C. Van Haesendonck, Y. Bruynseraede, A. Gilabert, and I. K. Schuller. "Transition in the flux lattice of artificially layered superconductors." Physical Review Letters 67, no. 18 (1991): 2577–2580.
Abstract: We report a novel magnetic-field dependence of the critical-current density Jc in artificially grown Ge/Pb superlattices. In these layered structures Jc exhibits an unexpected minimum as a function of perpendicular applied field, unlike any ever observed in other superconductor systems. The systematic evolution of this minimum as a function of layer thicknesses, temperature and pinning strength is related to either flux-lattice decoupling or melting.
|
|
|
Neerinck, D., K. Temst, M. Baert, E. Osquiguil, C. Van Haesendonck, Y. Bruynseraede, A. Gilabert, and I. K. Schuller. "Softening of the flux line lattice in Ge/Pb multilayers." Superconductor Science and Technology 5, no. 1S (1992).
Abstract: The authors measured the critical current density Jc of artificially grown Ge/Pb multilayers as a function of the magnetic field H perpendicular to applied perpendicular to the layers. In these layered structures Jc(Hperpendicular to) rapidly drops to a pronounced minimum at a field H*perpendicular to, then increases through a broad maximum and finally decays to zero at H c2 perpendicular to. The systematic evolution of this minimum as a function of temperature, layer thickness and pinning strength allows us to conclude that this peculiar behavior is due to a thermally driven softening of the flux line lattice which can be related either to a magnetic decoupling or a melting of the vortex structure.
|
|
|
Neerinck, D., K. Temst, M. Baert, E. Osquiguil, C. Van Haesendonck, Y. Bruynseraede, A. Gilabert, and I. K. Schuller. "Thermally induced transition in the vortex lattice of Ge/Pb multilayers." Physica C: Superconductivity and its applications 185-189, no. PART 3 (1991): 2061–2062.
Abstract: We report on a novel magnetic field dependence of the critical current density of M.B.E. grown Ge/Pb insulator/superconductor multilayers. When the magnetic field is applied perpendicular to the layers, the critical current density Jc drops to a minimum, followed by a broad maximum before finally decaying monotonously to zezero with increasing magnetic field. The dependence of this effect on pinning strength, temperature, and layer thickness suggests either a thermally driven coupling/decoupling transition, or melting of the vortex lattice.
|
|