Lora-Serrano, R., V. F. Correa, C. Adriano, C. Giles, J. G. S. Duque, E. Granado, P. G. Pagliuso, T. P. Murphy, E. C. Palm, S. W. Tozer et al. "First order magnetic transition and magnetoelastic effects in Sm2IrIn8." Physica B 403, no. 5-9 (2008): 1365–1367.
Abstract: We report measurements of temperature dependent heat capacity, thermal expansion and high resolution X-ray diffraction (XRD) taken on single crystals of Sm2IrIn8 intermetallic compound. This compound belongs to the RmMnIn3m+2n family (R=rare earth, m=1, 2, n=0, 1 and M=Rh, Ir and Co) which includes a number of heavy fermion superconductors for R=Ce. Particularly, Sm2IrIn8 is the only member of this family to present a first order magnetic phase transition (FOMT). Both thermal expansion and heat capacity data show very pronounced sharps peaks at View the MathML source consistent with an FOMT. The linear thermal-expansion coefficient is anisotropic and both c-axis and basal ab plane coefficients change discontinuously at 14.2 K. This change is negative for both direction in contrast to what was found for other members of family such as Ce2RhIn8 and CeRhIn5. The zero-field high resolution XRD data at 14.2 K shows no evidence for a tetragonal-to-orthorhombic structural phase transition. We discuss our results considering tetragonal crystalline field effects (CEF), quadupolar interactions, antiferromagnetic domains and magnetoelastic effects.
|
Betancourth, D., V. F. Correa, J. I. Facio, Fernández J., V. Vildosola, R. Lora-Serrano, J. M. Cadogan, A. A. Aligia, P. S. Cornaglia, and García D.J. "Magnetostriction reveals orthorhombic distortion in tetragonal Gd compounds." Physical Review B 99 (2019): 134406.
Abstract: We report detailed thermal expansion and magnetostriction experiments on GdCoIn5 and GdRh(In1−xCdx )5
(x = 0 and 0.025) single-crystal samples that show a sudden change in the dilation at a field B for temperatures
below the Néel transition temperature TN . We present a first-principles model including crystal-field effects,
dipolar and exchange interactions, and the dependence of the latter with lattice distortions in order to fully
account for the magnetostriction and magnetic susceptibility data. The mean-field solution of the model shows
that a transition between metastable states occurs at the field B. It also indicates that two degenerate phases
should coexist at temperatures below TN , which may explain the lack of observation, in high-resolution
x-ray experiments, of an orthorhombic distortion at the Néel transition, even though the experimentally
determined magnetic structure breaks the tetragonal symmetry and the magnetoelastic coupling from our model
is significant. These conclusions could be extended to other tetragonal Gd-based compounds that present the
same phenomenology.
|