Alcalde Bessia, F., M. Pérez, M. Gomez Berisso, N. Piunno, H. Mateos, F. J. Pomiro, I. Sidelnik, J. J. Blostein, M. Sofo Haro, and J. Lipovetzky. "X-ray micrographic imaging system based on COTS CMOS sensors." In 2017 Argentine Conference of Micro-Nanoelectronics, Technology and Applications (CAMTA), 1–4. 2017 Argentine Conference of Micro-Nanoelectronics, Technology and Applications (CAMTA)., 2017.
Abstract: This paper presents the use of Commercial Off The Shelf CMOS image sensors for the acquisition of X-ray images with high spatial resolution. The X-ray images, with application in biology, electronic components inspection or paleontology research, are obtained with 8 keV photons from a Cu tube. The quantum efficiency of the detector is estimated using attenuation lengths of photons in the sensor, and compared to traditional scintillator conversion layers.
|
Antonio, D., M. I. Dolz, and H. Pastoriza. "Micromechanical magnetometer using an all-silicon nonlinear torsional resonator." Applied Physics Letters 95, no. 13 (2009): 133505–3.
Abstract: In this work, a micromagnetometer employing a nonlinear torsional resonator with a high quality factor Q is presented experimentally. Oscillatory rotation of a conducting plate in the sensed magnetic field H induces eddy currents that dissipate energy. Due to the nonlinear response of the oscillator, the resulting mechanical damping originates frequency shifts in the resonance curve that depend on H. Nonlinearity results from the electrostatic detection, which introduces high order electrical spring constants. The device is fabricated with a standard silicon process and does not incorporate ferromagnetic materials. An analytical nonlinear model that correctly describes the device is also introduced.
|
Decca, R. S., H. D. Drew, E. Osquiguil, B. Maiorov, and J. Guimpel. "Anomalous proximity effect in underdoped YBa2Cu3O6+x Josephson junctions." Physical Review Letters 85, no. 17 (2000): 3708–3711.
Abstract: Experiments were carried out to probe the underdoped insulating material by the Josephson effect. Junctions were fabricated by exploiting the capability of locally photodoping insulating RBa2Cu3O6+x (R = rare earth) material. The existence of an anomalously large proximity effect was confirmed. The critical current of the junctions was consisted with the conventional Josephson relationship.
|
Deppe, M., N. Caroca-Canales, J. G. Sereni, and C. Geibel. "Evidence for a metamagnetic transition in the heavy Fermion system CeTiGe." In Journal of Physics: Conference Series, 012026. Vol. 200. International Conference on Magnetism, ICM 2009 200, no. SECTION 1. Karlsruhe, 2010.
Abstract: A recent study of CeTiGe identified this compound as a paramagnetic heavy Fermion system where the full J = 5/2 multiplet is involved in the formation of the ground state. Here we present a preliminary investigation of the dc-magnetization Mdc(H) and of the magnetoresistance Ï(H) of polycrystalline CeTiGe samples in applied magnetic fields up to μ0H = 14 T. The results reveal a pronounced metamagnetic transition at a critical field μ0Hc ≈ 13.5 T at low temperatures, with a step like increase in Mdc(H) of at least 0.6 μB/Ce. The metamagnetic transition leads to a strong decrease in Ï(H). A clear hysteresis in Mdc(H) and Ï(H) indicate that in CeTiGe these metamagnetic features correspond to a true thermodynamic, first order type transition in contrast to the critical behavior observed in the canonical system CeRu2Si2. Measurements at higher temperatures showed a continuous suppression of the metamagnetic transition with increasing T, which vanishes at T ∼ 30 K. © 2010 IOP Publishing Ltd.
|
Encina, S., and P. Pedrazzini. "Low Temperature Thermoelectric Power of Ce(Pd{1-x}Cux)2Si2." Journal of Low Temperature Physics 179, no. 1-2 (2015): 21–27.
Abstract: We present the thermoelectric power S(T) of the Ce(Pd 1−x Cu x ) 2 Si 2 alloy for temperatures \(1.5\,\mathrm{K} K. We observe three characteristic features across the \(0 substitution range: two positive maxima and a negative minimum, that are typical for Ce compounds that display, or lie close to, magnetism. Our analysis of the data shows that the high- T maximum is related to the Kondo effect on excited crystal-field levels, but that the low- T one cannot be simply associated with the Kondo scale, TK . We speculate that disorder induced by alloying can be at the origin of this discrepancy and can also be responsible for the low S(T) measured at low temperatures in the \(0.2 concentration range. We have extended electrical resistivity measurements on Ce(PdCu)Si 2 ( x=0.5 ) down to T∼40 mK in applied fields as high as 16 T.
|
Franco, D. G., R. E. Carbonio, and G. Nieva. "Change in the Magnetic Domain Alignment Process at the Onset of a Frustrated Magnetic State in Ferrimagnetic La2Ni(Ni1/3Sb2/3)O6 Double Perovskite." IEEE Transactions on Magnetics 49, no. 8 (2013): 4656–4659.
Abstract: We have performed a combined study of magnetization hysteresis loops and time dependence of the magnetization in a broad temperature range for the ferrimagnetic La2Ni(Ni1/3Sb2/3)O6 double perovskite. This material has a ferrimagnetic order transition at ~100 K and at lower temperatures (~20 K) shows the signature of a frustrated state due to the presence of two competing magnetic exchange interactions. The temperature dependence of the coercive field shows an important upturn below the point where the frustrated state sets in. The use of hysteresis data, magnetization versus applied magnetic field, together with the magnetization versus time data provides a unique opportunity to distinguish between different scenarios for the low temperature regime. From our analysis, a strong domain wall pinning results in the best scenario for the low temperature regime. For temperatures larger than 20 K, the adequate scenario seems to correspond to a weak domain wall pinning.
|
Franco, D. G., R. E. Carbonio, and G. Nieva. "Magnetic Properties of the Double Perovskites LaPbMSbO6 (M = Mn, Co, and Ni)." IEEE Transactions on Magnetics 49, no. 8 (2013): 4594–4597.
Abstract: New double perovskites LaPbMSbO6, where M2+ = Mn2+, Co2+, and Ni2+, were synthesized as polycrystals by an aqueous synthetic route at temperatures below 1000 °C. All samples are monoclinic, space group P21/n, as it is observed from Rietveld analysis of X-ray powder diffraction patterns. The distribution of M2+ and Sb5+ among the two octahedral sites have 3% of disorder for M2+ = Ni2+, whereas for M2+ = Mn2+ and Co2+ less disorder is found. The three samples have an antiferromagnetic transition, due to the antiferromagnetic coupling between M2 + through super-superexchange paths M2+-O2--Sb5+-O2--M2+. Transition temperatures are low: 8, 10 and 17 K for Mn2+, Co2+, and Ni2 + respectively, as a consequence of the relatively long distances between the magnetic ions M2+. Besides, for LaPbMnSbO6 a small transition at 45 K was found, with ferrimagnetic characteristics, possibly as a consequence of a small disorder between Mn2+ and Sb5+. This disorder would give additional and shorter interaction paths: superexchange Mn2+-O2--Mn2+.
|
Lederman, D., E. Osquiguil, G. Nieva, J. Guimpel, J. Hasen, Y. Bruynseraede, and I. K. Schuller. "Photoinduced enhancement of superconductivity." Journal of Superconductivity 7, no. 1 (1994): 127–130.
Abstract: The photoinduced enhancement of superconductivity in RBa2Cu3Ox (R=rare earth or yttrium) and PryR1-yBa2Cu3Ox was explored through temperature-dependent resistivity, Hall coefficient and mobility, and x-ray diffraction measurements. The increases in Tc are enhanced near the metal-insulator transition, although photoinduced changes always exist in oxygendeficient samples. Several explanations, including intergrain Josephson coupling, photoassisted oxygen ordering, and the trapping of photogenerated electrons in oxygen vacancies, are discussed.
|
Luzuriaga, J. "Measurements in the laminar and turbulent regime of superfluid4He by means of an oscillating sphere." Journal of Low Temperature Physics 108, no. 3-4 (1997): 267–277.
Abstract: The translational oscillations of a sphere in liquid helium have been measured as a way of studying superfluid turbulence. Experiments were carried out in the laminar flow regime for reference purposes, and good agreement found between measured and calculated quantities. In the turbulent region, the dissipation is found to be proportional to the square of the velocity of the sphere, as found previously by other workers. For high vibration amplitudes there is an increase in the hydrodynamic mass. This seems to scale with the superfluid fraction in a way that strongly suggests that the superfluid component plays an important role in the turbulent regime.
|
Luzuriaga, J. "Sphere on a vibrating reed for measurements of turbulence in superfluid helium." Journal of Alloys and Compounds (2000): 265–268.
Abstract: A modification of the vibrating reed, in which a massive sphere is made to oscillate at the end of a cantilevered beam, has been used for measurements in superfluid helium. The apparatus operates in the same way as a conventional vibrating reed with capacitive detection and drive. However, when operating submerged in the liquid, the frequency changes give information on the superfluid fraction, and the dissipation can be used to obtain information on the change of liquid flow, from laminar to turbulent. The spherical geometry allows an exact calculation of all parameters in the laminar regime, so departures due to the turbulence can be better quantified. The method has been found to work well in practice, and some measurements on the turbulent regime in the superfluid are presented.
|