Home | << 1 >> |
![]() |
Machain, P., A. M. Condó, P. Domenichini, G. Pozo López, M. Sirena, V. F. Correa, and N. Haberkorn. "Martensitic transformation in as-grown and annealed near-stoichiometric epitaxial Ni2MnGa thin films." Philosophical Magazine 95, no. 23 (2015): 2527–2538.
Abstract: Magnetic shape memory nanostructures have a great potential in the field of the nanoactuators. The relationship between dimensionality, microstructure and magnetism characterizes the materials performance. Here, we study the martensitic transformation in supported and free-standing epitaxial Ni47Mn24Ga29 films grown by sputtering on (0 0 1) MgO using a stoichiometric Ni2MnGa target. The films have a Curie temperature of ~390 K and a martensitic transition temperature of ~120 K. Similar transition temperatures have been observed in films with thicknesses of 1, 3 and 4 μm. Thicker films (with longer deposition time) present a wider martensitic transformation range that can be associated with small gradients in their chemical concentration due to the high vapour pressure of Mn and Ga. The magnetic anisotropy of the films shows a strong change below the martensitic transformation temperature. No features associated with variant reorientation induced by magnetic field have been observed. Annealed films in the presence of a Ni2MnGa bulk reference change their chemical composition to Ni49Mn26Ga25. The change in the chemical composition increases the martensitic transformation temperature, being closer to the stoichiometric compound, and reduces the transformation hysteresis. In addition, sharper transformations are obtained, which indicate that chemical inhomogeneities and defects are removed. Our results indicate that the properties of Ni–Mn–Ga thin films grown by sputtering can be optimized (fixing the chemical concentration and removing crystalline defects) by the annealing process, which is promising for the development of micromagnetic shape memory devices.
|
Pozo-López, G., A. M. Condó, L. M. Fabietti, E. Winkler, N. Haberkorn, and S. E. Urreta. "Microstructure of as-cast single and twin roller melt-spun Ni2MnGa ribbons." Materials Characterization 124 (2017): 171–181.
Abstract: Stoichiometric Ni2MnGa alloys are processed by two rapid solidification techniques – single-roller (SR) and twin-roller (TR) melt spinning – and the resulting microstructures and magnetic properties determined. Samples processed at tangential wheel speeds of 10m/s (V10) and 15m/s (V15) are studied in the as-cast condition to analyze the influence of the production methods on the microstructure. Important aspects like the resulting phases, their crystallographic texture, magnetic properties, martensitic transformation temperatures and Curie temperatures are compared. In addition, the magnetization mechanism involving twin boundary motion is explored. Our results indicate that the TR method provides lower cooling rates, thicker samples, higher internal stresses and larger MnS precipitates. However, the quenching rate is mainly determined by the tangential wheel velocity. TR samples also exhibit [100] texture normal to the ribbon plane but in a lesser extent than SR ribbons. Martensitic transformation temperatures are higher in samples V15 (~150K) than in V10 (~100K), with no clear difference between the SR and TR modes. This behavior is explained by considering distinct degrees of disorder in the L21 austenite phase resulting from quenching. The hysteresis of the transformation, defined as the difference Af−MS, takes similar values in the four samples analyzed. Pre-martensitic transformation temperatures are also slightly higher in samples V15, (230±3) K, than in samples V10, (222±3) K, as the magnitude of the Hopkinson effect, in good agreement with a higher residual stress level in TR ribbons. In the martensitic state, all ribbons exhibit hysteresis loops characteristic of a magnetization mechanism involving twin boundary motion. The switching magnetic fields for the onset of Type I twin boundary motion result between 220mT and 365mT, values equivalent to twinning stresses of about 1MPa. It is concluded that both procedures, SR and TR melt spinning, provide microstructures favoring magnetic field induced twin variant reorientation.
|