|
Cecilia Blanco, M., J. M. De Paoli, S. Ceppi, G. Tirao, V. M. Nassif, J. Guimpel, and R. E. Carbonio. "Synthesis, structural characterization and magnetic properties of the monoclinic ordered double perovskites BaLaMSbO6, with MÂ =Â Mn, Co and Ni." Journal of Alloys and Compounds 606 (2014): 139–148.
|
|
|
Franco, D. G., R. E. Carbonio, and G. Nieva. "Magnetic Properties of the Double Perovskites LaPbMSbO6 (M = Mn, Co, and Ni)." IEEE Transactions on Magnetics 49, no. 8 (2013): 4594–4597.
Abstract: New double perovskites LaPbMSbO6, where M2+ = Mn2+, Co2+, and Ni2+, were synthesized as polycrystals by an aqueous synthetic route at temperatures below 1000 °C. All samples are monoclinic, space group P21/n, as it is observed from Rietveld analysis of X-ray powder diffraction patterns. The distribution of M2+ and Sb5+ among the two octahedral sites have 3% of disorder for M2+ = Ni2+, whereas for M2+ = Mn2+ and Co2+ less disorder is found. The three samples have an antiferromagnetic transition, due to the antiferromagnetic coupling between M2 + through super-superexchange paths M2+-O2--Sb5+-O2--M2+. Transition temperatures are low: 8, 10 and 17 K for Mn2+, Co2+, and Ni2 + respectively, as a consequence of the relatively long distances between the magnetic ions M2+. Besides, for LaPbMnSbO6 a small transition at 45 K was found, with ferrimagnetic characteristics, possibly as a consequence of a small disorder between Mn2+ and Sb5+. This disorder would give additional and shorter interaction paths: superexchange Mn2+-O2--Mn2+.
|
|
|
Gil, D. M., G. Nieva, D. G. Franco, M. I. Gómez, and R. E. Carbonio. "Lead nitroprusside: A new precursor for the synthesis of the multiferroic Pb2Fe2O5, an anion-deficient perovskite." Materials Chemistry and Physics 141, no. 1 (2013): 355–361.
Abstract: In order to investigate the formation of multiferroic oxide Pb2Fe2O5, the thermal decomposition of Pb[Fe(CN)5NO] has been studied. The complex precursor and the thermal decomposition products were characterized by IR and Raman spectroscopy, thermal analysis, powder X-ray diffraction (PXRD), scanning electron microscopy and magnetic measurements. The crystal structure of Pb[Fe(CN)5NO] was refined by Rietveld analysis. It crystallizes in the orthorhombic system, space group Pnma. The thermal decomposition in air produces highly pure Pb2Fe2O5 as final product. This oxide is an anion deficient perovskite with an incommensurate superstructure. The magnetic measurements confirm that Pb2Fe2O5 shows a weak ferromagnetic signal probably due to disorder in the perfect antiferromagnetic structure or spin canting. The estimated ordering temperature from the fit of a phenomenological model was 520Â K. The SEM images reveal that the thermal decomposition of Pb[Fe(CN)5NO] produces Pb2Fe2O5 with small particle size.
|
|