Alcalde Bessia, F., D. Flandre, N. André, J. Irazoqui, M. Pérez, M. Gómez Berisso, and J. Lipovetzky. "Ultra Low Power Ionizing Dose Sensor Based on Complementary Fully Depleted MOS Transistors for Radiotherapy Application." IEEE Transactions on Nuclear Science (2019): 1.
Abstract: We evaluate the use of the thick buried oxide (BOX) of Fully Depleted Silicon-on-Insulator (FD-SOI) transistors for Total Ionizing Dose (TID) measurements in a radiotherapy application. The devices were fabricated with a custom process in UniversitC) Catholique de Louvain (UCL) which allows to make accumulation mode PMOS transistors and inversion mode NMOS transistors. We characterized the temperature behavior of these devices and the response under X-ray radiation produced by an Elekta radiotherapy linear accelerator, and compared the obtained dose sensitivity to other published works. Taking advantage of these devices, an ultra low power MOS ionizing dose sensor, or MOS dosimeter, with inherent temperature compensation is presented. This dosimeter achieved a sensitivity of 154 mV/Gy with a temperature error factor of 13 mGy/°C and a current consumption below 1 nA.
|
|
Alcalde Bessia, F., D. Flandre, N. André, J. Irazoqui, M. Pérez, M. Gómez Berisso, and J. Lipovetzky. "Fully-Depleted SOI MOSFET Sensors in Accumulation Mode for Total Dose Measurement." In 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC), 1–3. 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC)., 2018.
Abstract: Fully Depleted Silicon-on-Insulator (FD-SOI) transistors fabricated with a custom process in Université Catholique de Louvain (UCL) were irradiated with X-rays using an Elekta Synergy radiotherapy linear accelerator. I-V curves of FD-SOI are sensitive to charges produced in the buried oxide (BOX) by ionizing radiation, so it is possible to use these devices as radiation dosimeters. In this work, we evaluated the use of thick BOX back-gate transistors for Total Ionizing Dose (TID) measurement using different bias conditions and we obtained a maximum sensitivity of 191 mV/Gy for devices operating in accumulation mode.
|
|
Alcalde Bessia, F., M. Pérez, M. Gomez Berisso, N. Piunno, H. Mateos, F. J. Pomiro, I. Sidelnik, J. J. Blostein, M. Sofo Haro, and J. Lipovetzky. "X-ray micrographic imaging system based on COTS CMOS sensors." In 2017 Argentine Conference of Micro-Nanoelectronics, Technology and Applications (CAMTA), 1–4. 2017 Argentine Conference of Micro-Nanoelectronics, Technology and Applications (CAMTA)., 2017.
Abstract: This paper presents the use of Commercial Off The Shelf CMOS image sensors for the acquisition of X-ray images with high spatial resolution. The X-ray images, with application in biology, electronic components inspection or paleontology research, are obtained with 8 keV photons from a Cu tube. The quantum efficiency of the detector is estimated using attenuation lengths of photons in the sensor, and compared to traditional scintillator conversion layers.
|
|
Alcalde Bessia, F., M. Pérez, M. Sofo Haro, I. Sidelnik, J. J. Blostein, S. Suárez, P. Pérez, M. Gómez Berisso, and J. Lipovetzky. "Displacement Damage in CMOS Image Sensors After Thermal Neutron Irradiation." IEEE Transactions on Nuclear Science 65, no. 11 (2018): 2793–2801.
Abstract: In this paper, CMOS image sensors were exposed to thermal neutrons observing an increase in the dark signal of many pixels. The effect was found to be similar to the damage caused by alpha particles irradiation. Rutherford backscattering spectroscopy (RBS) and SIMNRA simulation were used to confirm that the sensors contain boron in the insulation layers. The damage produced by thermal neutrons is explained as displacement damage caused by alpha particles and lithium-7 ions in the silicon active volume of the sensors after boron-10 thermal neutron capture.
|
|
Ale Crivillero, M. V., M. L. Amigó, D. G. Franco, A. Badía-Majós, J. Guimpel, and G. Nieva. "In Plane Vortex Dynamic Anisotropy in the Iron Deficient Fe_{1-y}Se Superconductor." Journal of Low Temperature Physics 179, no. 1-2 (2015): 9–14.
Abstract: We present electrical transport measurements in the superconducting dissipative state of crystalline iron deficient Fe 1−y Se samples. These iron deficient samples were synthesized using NaCl/KCl flux and are characterized by the presence of correlated defects. The dissipation in electrical transport experiments, when the driving current is perpendicular or parallel to the crystal planes, depends strongly on the direction of the applied magnetic field , ( H=12 T), within the sample plane. There is a dissipation modulation each 60∘ due to the presence of the correlated defects. We correlate these angular dependent features with the variation of the critical currents ( Jc ) changing the direction of H confined in the crystals planes. Jc was measured from magnetization loops at fixed temperatures and angles of H always within the basal planes.
|
|
Ale Crivillero, M. V., N. Haberkorn, G. Nieva, and J. Guimpel. "Electrical transport properties of FeSe/Fe3O4 bilayers." Materials Today: Proceedings 14 (2019): 18–21.
Abstract: In this work, we study the electronic properties of FeSe/Fe3O4 bilayers deposited onto SrTiO3 (100) and MgO (100) substrates by DC magnetron sputtering. The comparative study of Fe3O4 films grown on SrTiO3 and MgO reveals significant differences in the intensity of the Verwey transition (Tv∼130K). This allows us to probe the impact of the distortions associated to the Verwey transition on the transport properties of the FeSe over-layer in the FeSe/Fe3O4 bilayers. A correlated increase in the resistance and weakened superconducting properties are observed..
|
|
Antonio, D., M. I. Dolz, and H. Pastoriza. "Micromechanical magnetometer using an all-silicon nonlinear torsional resonator." Applied Physics Letters 95, no. 13 (2009): 133505–3.
Abstract: In this work, a micromagnetometer employing a nonlinear torsional resonator with a high quality factor Q is presented experimentally. Oscillatory rotation of a conducting plate in the sensed magnetic field H induces eddy currents that dissipate energy. Due to the nonlinear response of the oscillator, the resulting mechanical damping originates frequency shifts in the resonance curve that depend on H. Nonlinearity results from the electrostatic detection, which introduces high order electrical spring constants. The device is fabricated with a standard silicon process and does not incorporate ferromagnetic materials. An analytical nonlinear model that correctly describes the device is also introduced.
|
|
Berger, S., R. Hauser, H. Michor, G. Hilscher, E. Bauer, J. G. Sereni, and P. Rogl. "Thermodynamic properties of Ce(RuxRh1-x)3B2." Physica B 259-261 (1999): 116–117.
Abstract: Investigations of the magnetic phase diagram of Ce(RuxRh1-x)(3)B-2 were complemented by detailed specific heat and susceptibility measurements revealing complex magnetic order without spontaneous magnetisation. This regime follows the ferromagnetic phase on Rh/Ru substitution for x greater than or similar to 0.06. (C) 1999 Elsevier Science B.V. All rights reserved.
|
|
Correa V. F. "Introducing the Hamiltonian as a 'thermodynamic' potential." European Journal of Physics 40 (2019): 035007.
Abstract: A conceptually simple physical interpretation of a conserved Hamiltonian ïˆ
for a mechanical system with a time-dependent constraint is given. For the
case of a bead on a vertical hoop forced to rotate with constant angular
velocity w, ïˆ is nothing but the total energy of the system plus the external
actuator keeping ω fixed. In an analogy with thermodynamics, the Hamiltonian
is introduced as a thermodynamic potential obtained from a Legendre transformation
of the energy, in a very instructive way. The ideas can be made
extensive to different problems with time-dependent constraints.
|
|
D'Anna, G., and Andr. "Flux-line response in 2H-NbSe2 investigated by means of the vibrating superconductor method." Physica C: Superconductivity and its applications 218, no. 1-2 (1993): 238–244.
Abstract: We measure transverse AC losses in the low- and high-amplitude regime of 2H-NbSe2 single crystals using vibrating superconductor methods. The measurements are sensitive to small deviations of the critical state. The data constitute evidence for a peak effect of the critical current as a function of the temperature in this compound. We construct in the H-T phase diagram the “peak-effect” line which is supposed to mark an abrupt cross-over in the vortex-pinning regime.
|
|
de la Cruz, F. "Structural relaxation: low temperature properties.", 269. Proceedings of the Latin American Symposium of Physics of Amorphous Systems – v1. Brazil, 1984.
Abstract: We discuss the changes in transport and superconducting properties of amorphous Zr70Cu30,
induced by thermal relaxation The experimental results are used to investigate the
relation between the microscopic parameters and the observed physical properties It
is shown that the density of eletronic states determines the shift Tc as well as the
variation of the electrical resistivity It is necessary to assume strong hybridization
between s and d bands to understand the eletrodynamic response of the superconductor
(Author)
|
|
Decca, R. S., H. D. Drew, E. Osquiguil, B. Maiorov, and J. Guimpel. "Anomalous proximity effect in underdoped YBa2Cu3O6+x Josephson junctions." Physical Review Letters 85, no. 17 (2000): 3708–3711.
Abstract: Experiments were carried out to probe the underdoped insulating material by the Josephson effect. Junctions were fabricated by exploiting the capability of locally photodoping insulating RBa2Cu3O6+x (R = rare earth) material. The existence of an anomalously large proximity effect was confirmed. The critical current of the junctions was consisted with the conventional Josephson relationship.
|
|
Dolz, M. I., P. Pedrazzini, H. Pastoriza, M. Konczykowski, and Y. Fasano. "Effect of Quenched Disorder in the Entropy-Jump at the First-Order Vortex Phase Transition of Bi{2}Sr{2}CaCu{2}O{8 + \delta }." Journal of Low Temperature Physics 179, no. 1-2 (2015): 28–34.
Abstract: We study the effect of quenched disorder in the thermodynamic magnitudes entailed in the first-order vortex phase transition of the extremely layered Bi 2 Sr 2 CaCu 2 O 8+δ compound. We track the temperature-evolution of the enthalpy and the entropy jump at the vortex solidification transition by means of AC local magnetic measurements. Quenched disorder is introduced to the pristine samples by means of heavy-ion irradiation with Pb and Xe producing a random columnar-track pins distribution with different densities (matching field BΦ ). In contrast with previous magneto-optical reports, we find that the first-order phase transition persists for samples with BΦ up to 100 Gauss. For very low densities of quenched disorder (pristine samples), the evolution of the thermodynamic properties can be satisfactorily explained considering a negligible effect of pinning and only electromagnetic coupling between pancake vortices lying in adjacent CuO planes. This description is not satisfactory on increasing magnitude of quenched disorder.
|
|
Dolz, M. I., D. E. Shalóm, H. Pastoriza, and D. O. López. "Anisotropic response of the moving vortex lattice in superconducting Mo(1−x)Gex amorphous films." Physica C: Superconductivity 474 (2012): 34–37.
Abstract: We have performed magnetic susceptibility measurements in Mo(1−x)Gex amorphous thin films biased with an electrical current using anisotropic coils. We tested the symmetry of the vortex response changing the relative orientation between the bias current and the susceptibility coils. We found a region in the DC current–temperature phase diagram where the dynamical vortex structures behave anisotropically. In this region the shielding capability of the superconducting currents measured by the susceptibility coils is less effective along the direction of vortex motion compared to the transverse direction. This anisotropic response is found in the same region where the peak effect in the critical current is developed. On rising temperature the isotropic behavior is recovered.
|
|
El-Khatib, S., A. M. Alsmadi, V. Correa, A. V. Andreev, A. Lacerda, F. Nasreen, and H. Nakotte. "Electronic properties of single crystalline UNi[sub 0.39]Rh[sub 0.61]Al." Journal of Applied Physics 103, no. 7 (2008): 07B714–3.
|
|
Fasano, Y., P. Szabó, J. KaÄmarÄík, Z. Pribulová, P. Pedrazzini, P. Samuely, and V. F. Correa. "Unconventional superconductivity in the strong-coupling limit for the heavy fermion system CeCoIn5." Physica B: Condensed Matter 536 (2018): 798–802.
Abstract: We present scanning tunneling spectroscopy measurements of the local quasiparticles' excitation spectra of the heavy fermion CeCoIn5 between 440mK and 3K in samples with a bulk Tc=2.25K. The spectral shape of our low-temperature tunneling data, quite textbook nodal-Δ conductance, allow us to confidently fit the spectra with a d-wave density of states considering also a shortening of quasiparticles' lifetime term Γ. The Δ(0) value obtained from the fits yields a BCS ratio 2Δ/kTc=7.73 suggesting that CeCoIn5 is an unconventional superconductor in the strong coupling limit. The fits also reveal that the height of coherence peaks in CeCoIn5 is reduced with respect to a pure BCS spectra and therefore the coupling of quasiparticles with spin excitations should play a relevant role. The tunneling conductance shows a depletion at energies smaller than Δ for temperatures larger than the bulk Tc, giving further support to the existence of a pseudogap phase that in our samples span up to T*∼1.2Tc. The phenomenological scaling of the pseudogap temperature observed in various families of cuprates, 2Δ/kT*∼4.3, is not fulfilled in our measurements. This suggests that in CeCoIn5 the strong magnetic fluctuations might conspire to close the local superconducting gap at a smaller pesudogap temperature-scale than in cuprates.
|
|
Franco, D. G., R. E. Carbonio, and G. Nieva. "Magnetic Properties of the Double Perovskites LaPbMSbO6 (M = Mn, Co, and Ni)." IEEE Transactions on Magnetics 49, no. 8 (2013): 4594–4597.
Abstract: New double perovskites LaPbMSbO6, where M2+ = Mn2+, Co2+, and Ni2+, were synthesized as polycrystals by an aqueous synthetic route at temperatures below 1000 °C. All samples are monoclinic, space group P21/n, as it is observed from Rietveld analysis of X-ray powder diffraction patterns. The distribution of M2+ and Sb5+ among the two octahedral sites have 3% of disorder for M2+ = Ni2+, whereas for M2+ = Mn2+ and Co2+ less disorder is found. The three samples have an antiferromagnetic transition, due to the antiferromagnetic coupling between M2 + through super-superexchange paths M2+-O2--Sb5+-O2--M2+. Transition temperatures are low: 8, 10 and 17 K for Mn2+, Co2+, and Ni2 + respectively, as a consequence of the relatively long distances between the magnetic ions M2+. Besides, for LaPbMnSbO6 a small transition at 45 K was found, with ferrimagnetic characteristics, possibly as a consequence of a small disorder between Mn2+ and Sb5+. This disorder would give additional and shorter interaction paths: superexchange Mn2+-O2--Mn2+.
|
|
Franco, D. G., A. Sarmiento-Chavez, N. Schenone, A. E. L. Allcca, M. G. Berisso, Y. Fasano, and J. Guimpel. "Characterization of the Nb-B Superlattice System." Physica C: Superconductivity and its Applications 531 (2016): 93–97.
Abstract: Abstract
We study the growth, stacking and superconducting properties of Nb and B thin films and superlattices. The interest in these resides in their possible use in transition edge neutron sensors. The samples were grown by magnetron sputtering over Si (100) substrates. The X-ray diffraction patterns for all Nb containing samples show a Nb (110) preferential orientation. From the low-angle X-ray reflectivity we obtain information on the superlattice structure. The superconducting transition temperatures of the superlattices, obtained from the temperature dependence of the magnetization, are higher than those of single Nb films of similar thickness. The temperature dependence of the perpendicular and parallel upper critical fields indicate that the superlattices behave as an array of decoupled superconducting Nb layers.
|
|
Galimberti, C. L., F. Alcalde Bessia, M. Perez, M. Gómez Berisso, M. Sofo Haro, I. Sidelnik, J. J. Blostein, H. Asorey, and J. Lipovetzky. "A Low Cost Environmental Ionizing Radiation Detector Based on COTS CMOS Image Sensors." In 2018 IEEE Biennial Congress of Argentina (ARGENCON), 1–6. 2018 IEEE Biennial Congress of Argentina (ARGENCON)., 2018.
Abstract: We present the development of a system for the detection of ionizing radiation based on the Omnivision OV5647 Commercial Off The Shelf image sensor. The data is read and processed in real-time using a Raspberry Pi 3 computer. The amount of charge and geometrical characteristics of the cluster of pixels exited when a particle interacts with the sensor is recorded and used to identify the type of incoming particle, distinguishing between alpha particles and X-ray or gamma photons. The software was programmed in C using the OpenCV library. The system was tested with 137Cs and 241Am radiation sources.
|
|
Gomez Berisso, M., J. G. Sereni, A. Braghta, G. Schmerber, B. Chevalier, and J. P. Kappler. "Field suppression of the modulated phase of Ce2Pd2Sn." Physica B 404, no. 19 (2009): 2930–2933.
Abstract: Low temperature magnetic (M) and thermal (CP) properties of the intermetallic compound Ce2Pd2Sn have been investigated at zero and different magnetic fields. Two transitions were recognized at and , with latter nearly coinciding with the extrapolated Curie-Weiss temperature . The Curie factor evaluated from T>=TM, is [approximate]2μB. The positive value of θP, the triangular coordination of the magnetic (Ce) atoms and the weak effect of applied magnetic field, reveal that TM cannot be considered as a canonic antiferromagnetic transition like claimed in the literature. M(T) measurements under moderate magnetic fields () show TC(B) increasing while TM(B) is practically not affected. Both transition merge in a critical point at for , where the intermediate phase is suppressed. At , the cusp of a first order transition is observed in CP(T). According to the proposed ferromagnetic ground state, it is followed by a CP(T)[is proportional to]T3/2exp(-Eg/T) dependence, with a gap of anisotropy .
|
|
Haberkorn, N., S. Suárez, S. L. Bud'ko, and P. C. Canfield. "Strong pinning and slow flux creep relaxation in Co-doped CaFe2As2 single crystals." Solid State Communications 318 (2020): 113963.
Abstract: We report on measurements of critical current densities Jc and flux creep rates S of freestanding Ca(Fe1−xCox)2As2 (x ≈ 0.033) single crystals with Tc ≈ 15.7 K by performing magnetization measurements. The magnetic field dependences of Jc at low temperature display features related to strong pinning. In addition, we find that the system displays small flux creep rates. The characteristic glassy exponent, μ, and the pinning energy, U0, display exceptional high values for pristine crystals. We find that for magnetic fields between 0.3 T and 1 T, μ decreases from ≈ 2.8 to ≈ 2 and U0 remains ≈ 300 K. Analysis of the pinning force indicates that the mechanism is similar to the observed in polycrystalline systems in which grain boundaries and random disorder produce the vortex pinning. Considering the large U0 observed in the single crystal, we attempt to improve the pinning by adding random point disorder by 3 MeV proton irradiation with a fluence of 2 × 1016 proton/cm2. The results show that, unlike other iron-based superconductors, the superconducting fraction is sharply reduced by irradiation. This fact indicates that the superconductivity in the system is extremely fragile to an increment in the disorder. The superconducting volume fraction in the irradiated crystal systematically recovers after removal disorder by thermal annealing, which evidences as to the observation of critical state in curves of magnetization versus magnetic field. No features related to a reentrant antiferromagnetic transition are observed for the irradiated sample.
|
|
Herbsommer, J. A., J. Luzuriaga, and S. - W. Cheong. "Vortex glass melting in single crystal La1.825 Sr0.075CuO4." Physica C 258, no. 1-2 (1996): 169–174.
Abstract: The vortex phase diagram in single crystalline La1.85Sr0.075CuO4 has been studied using an AC-susceptibility technique. A peak in the out-of-phase (x?) component of the susceptibility indicates a transition from a pinned flux lattice (FLL) to an unpinned one. This peak is frequency dependent for all the values of the magnetic field measured (0.01 to 4 T), and this, as well as the general behavior found in the cuprates, has prompted us to interpret our data as evidence for a vortex-glass to liquid transition in the FLL. The activation energies obtained can be fitted to a theory developed by Vinokur et al. Measurements with the magnetic field at an angle with the Cu-O planes may also be understood qualitatively within this framework.
|
|
Kim, J., N. Haberkorn, K. Gofryk, M. J. Graf, F. Ronning, A. S. Sefat, R. Movshovich, and L. Civale. "Superconducting properties in heavily overdoped Ba(Fe0.86Co0.14)2As2 single crystals." Solid State Communications 201 (2015): 20–24.
Abstract: Abstract
We report the intrinsic superconducting parameters in a heavily overdoped Ba(Fe1−xCox)2As2 (x=0.14) single crystal and their influence in the resulting vortex dynamics. We find a bulk superconducting critical temperature of 9.8 K, magnetic penetration depth λab (0)=660±50 nm, coherence length ξab (0)=6.4±0.2 nm, and the upper critical field anisotropy γT→Tc≈3.7. The vortex phase diagram, in comparison with the optimally doped compound, presents a narrow collective creep regime. The intrinsic pinning energy plays an important role in the resulting vortex dynamics as compared with similar pinning landscape and comparable intrinsic thermal fluctuations.
|
|
Lederman, D., J. Hasen, I. K. Schuller, E. Osquiguil, and Y. Bruynseraede. "Photoinduced superconductivity and structural changes in high temperature superconducting films." Applied Physics Letters 64, no. 5 (1994): 652–654.
Abstract: The illumination of PryGd1-yBa2Cu 3Ox semiconducting and superconducting thin films increases their critical temperatures and decreases their normal state resistivities if and only if the films are oxygen deficient. Moreover, these changes are enhanced near the Pr-induced metal-insulator transition. Light also causes a contraction of the c-axis in YBa2Cu3Ox which is correlated with the observed photoinduced resistivity changes. These changes are similar to those observed when oxygen-deficient YBa 2Cu3Ox is enriched with oxygen or annealed at room temperature after quenching from high temperatures.
|
|
Lederman, D., E. Osquiguil, G. Nieva, J. Guimpel, J. Hasen, Y. Bruynseraede, and I. K. Schuller. "Photoinduced enhancement of superconductivity." Journal of Superconductivity 7, no. 1 (1994): 127–130.
Abstract: The photoinduced enhancement of superconductivity in RBa2Cu3Ox (R=rare earth or yttrium) and PryR1-yBa2Cu3Ox was explored through temperature-dependent resistivity, Hall coefficient and mobility, and x-ray diffraction measurements. The increases in Tc are enhanced near the metal-insulator transition, although photoinduced changes always exist in oxygendeficient samples. Several explanations, including intergrain Josephson coupling, photoassisted oxygen ordering, and the trapping of photogenerated electrons in oxygen vacancies, are discussed.
|
|
Lerner, B., M. S. Perez, J. Bonaparte, D. J. Rodriguez, H. Pastoriza, A. Boselli, and A. Lamagna. "Development Of Single Wall Carbon Nanotube Based Sensor." In OLFACTION AND ELECTRONIC NOSE: Proceedings of the 13th International Symposium on Olfaction and Electronic Nose, 405–406. Vol. 1137. AIP, 2009.
|
|
Lora-Serrano, R., V. F. Correa, C. Adriano, C. Giles, J. G. S. Duque, E. Granado, P. G. Pagliuso, T. P. Murphy, E. C. Palm, S. W. Tozer et al. "First order magnetic transition and magnetoelastic effects in Sm2IrIn8." Physica B 403, no. 5-9 (2008): 1365–1367.
Abstract: We report measurements of temperature dependent heat capacity, thermal expansion and high resolution X-ray diffraction (XRD) taken on single crystals of Sm2IrIn8 intermetallic compound. This compound belongs to the RmMnIn3m+2n family (R=rare earth, m=1, 2, n=0, 1 and M=Rh, Ir and Co) which includes a number of heavy fermion superconductors for R=Ce. Particularly, Sm2IrIn8 is the only member of this family to present a first order magnetic phase transition (FOMT). Both thermal expansion and heat capacity data show very pronounced sharps peaks at View the MathML source consistent with an FOMT. The linear thermal-expansion coefficient is anisotropic and both c-axis and basal ab plane coefficients change discontinuously at 14.2 K. This change is negative for both direction in contrast to what was found for other members of family such as Ce2RhIn8 and CeRhIn5. The zero-field high resolution XRD data at 14.2 K shows no evidence for a tetragonal-to-orthorhombic structural phase transition. We discuss our results considering tetragonal crystalline field effects (CEF), quadupolar interactions, antiferromagnetic domains and magnetoelastic effects.
|
|
Luzuriaga, J. "Sphere on a vibrating reed for measurements of turbulence in superfluid helium." Journal of Alloys and Compounds (2000): 265–268.
Abstract: A modification of the vibrating reed, in which a massive sphere is made to oscillate at the end of a cantilevered beam, has been used for measurements in superfluid helium. The apparatus operates in the same way as a conventional vibrating reed with capacitive detection and drive. However, when operating submerged in the liquid, the frequency changes give information on the superfluid fraction, and the dissipation can be used to obtain information on the change of liquid flow, from laminar to turbulent. The spherical geometry allows an exact calculation of all parameters in the laminar regime, so departures due to the turbulence can be better quantified. The method has been found to work well in practice, and some measurements on the turbulent regime in the superfluid are presented.
|
|
Luzuriaga, J., M. - O. Andre, and W. Benoit. "Frequency and amplitude response of the flux-line lattice to mechanical perturbation in ceramic YBa2Cu3O7." Physica C: Superconductivity and its applications 201, no. 3-4 (1992): 257–262.
Abstract: The mechanical response of the flux-line lattice has been measured with a low-frequency forced pendulum in ceramic YBa2Cu3O7. A dissipation peak observed in temperature sweeps is frequency-independent between 1 mHz and 5 Hz. Dissipation depends strongly on applied torque, and for fixed temperatures this dependence is well fitted by a rheological model of extended dry friction. If the model is extended to take account of thermal activation, however, it does not agree with the measured frequency independence, which is hard to explain within simple models of thermal activation.
|
|
Maiorov, B., and E. Osquiguil. "Bose-glass-like phases in oriented-twin YBa2Cu3O7-? crystals." Journal of Low Temperature Physics 135, no. 1-2 (2004): 131–134.
Abstract: We experimentally study the dynamical response of the superconducting vortex system near the solid-liquid transition by applying forces parallel and perpendicular to a planar random defect array. Our results show that for magnetic fields above a certain critical field Hcr'? 4 T the solid glassy vortex phase in YBa2Cu3O7-? crystals with oriented twin planes does not correspond to the so-called Bose-glass phase.
|
|
Mateos, H., J. Lipovetzky, F. Alcalde Bessia, M. Perez, P. Cappagli, and M. Gomez Berisso. "Characterization of sensors and design of an embedded photodetectors array for beam profile measurements in radiotherapy." In 2017 Eight Argentine Symposium and Conference on Embedded Systems (CASE), 1–6. 2017 Eight Argentine Symposium and Conference on Embedded Systems (CASE)., 2017.
Abstract: In this work, the dosimetric performance of several Commercial Of The Shelf photodiodes was studied. They were tested against gamma rays from a teletherapy source and were characterized with the aim of building a one-dimensional array of dosimeters able to measure the the spatial distribution of dose in a radiotherapy irradiation field. An embedded system comprising an array of 40 photodiodes and its acquisition electronics was built and tested. The dose resolution of each detector was 0.06 cGy and the spatial resolution of the system 0.5 cm.
|
|
Morhell, N., and H. Pastoriza. "Power law fluid viscometry through capillary filling in a closed microchannel." Sensors and Actuators B: Chemical 227 (2016): 24–28.
Abstract: In this work we analyze the capillary filling dynamics of non-Newtonian fluids that can be modeled with a power law constitutive equation. We solve the Poiseuille equations for an hydrophilic closed channel where capillary pressures drives the fluid in until a rest position given by the barometric pressure is reached. We show that this dynamics can be used to measure both the coefficient k and exponent n, that describes the power law fluid viscosity and we ran tests on Soda Lime Glass microchannels. Using a simple experimental setup with a USB Microscope and a custom image processing software we were able to measure the power law parameters of whole blood, wall varnish and DI water. The exponents were also obtained from the velocity profiles inside the microchannel using a custom μPIV setup matching both results with those measured with a standard Brookfield Rotational Microviscometer.
|
|
Navarro, H., M. Sirena, J. Kim, and N. Haberkorn. "Josephson coupling in high-Tc superconducting junctions using ultra-thin BaTiO3 barriers." Materials Science and Engineering: B 262 (2020): 114714.
Abstract: We study the electrical transport of vertically-stacked Josephson tunnel junctions using GdBa2Cu3O7−δ electrodes and a BaTiO3 barrier with thicknesses between 1 nm and 3 nm. Current-voltage measurements at low temperatures show a Josephson coupling for junctions with BaTiO3 barriers of 1 nm and 2 nm. Reducing the barrier thickness bellow a critical thickness seems to suppress the ferroelectric nature of the BaTiO3. The Josephson coupling temperature reduces as the barrier thicknesses increases. The Josephson energies at 12 K are of ≈ 1.5 mV and ≈ 7.5 mV for BaTiO3 barriers of 1 nm and 2 nm, respectively. Fraunhofer patterns are consistent with fluctuations in the critical current due to structural inhomogeneities in the barriers. Our results are promising for the development of Josephson junctions using high-Tc electrodes with energy gaps much higher than those usually present in conventional low-temperature superconductors.
|
|
Pedrazzini, P., and D. Jaccard. "The critical pressure of chromium." Physica B: Condensed Matter 403, no. 5-9 (2008): 1222–1224.
Abstract: We present first results of high-pressure resistivity measurements on pure chromium. Two pieces of evidence show that spin density wave magnetism is suppressed at a critical pressure pc?10GPa, namely, the evolution of the ordering temperature TN(p) and the rapid decrease of the residual resistivity close to pc. Our discussion profits from the comparison between pressurized-Cr and the Cr1-xVx alloy, for which a large amount of information on its electronic properties is available.
|
|
Pedrazzini, P., D. Jaccard, M. Deppe, C. Geibel, and J. G. Sereni. "Multiprobe high-pressure experiments in CePd0.6Rh0.4 and CePd3." Physica B: Condensed Matter 404, no. 19 (2009): 2898–2903.
Abstract: Results of recent multiprobe high-pressure experiments on ferromagnetic CePd0.6Rh0.4 and intermediate-valent CePd3 are presented. Simultaneous resistivity (ρ), thermopower (S), and ac heat capacity measurements show that the long-range ferromagnetic state of CePd0.6Rh0.4 vanishes in the proximity of a sharp valence-crossover pressure , i.e. before reaching a quantum critical point. However, a magnetic signal that is progressively suppressed is still detected at higher pressures. For CePd3, the results of simultaneous ρ(T,p) and S(T,p) measurements up to and down to the mK temperature range show a surprisingly weak pressure dependence.
|
|
Pedrazzini, P., D. Jaccard, G. Lapertot, J. Flouquet, Y. Inada, H. Kohara, and Y. Onuki. "Probing the extended non-Fermi liquid regimes of MnSi and Fe." Physica B – Condensed Matter 378-380 (2006): 165–166.
Abstract: Recent studies show that the non-Fermi liquid (NFL) behavior of MnSi and Fe spans over an unexpectedly broad pressure range, between the critical pressure p and around 2p. In order to determine the extension of their NFL regions, we analyze the evolution of the resistivity ρ(T)˜A(p)T at higher pressures. We find that in MnSi the n=32 exponent holds below 4.8GPa≈3p, but it increases above that pressure. At 7.2 GPa we observe the low-temperature Fermi liquid exponent n=2 whereas for T>1.5K, n=53. Our measurements in Fe show that the NFL behavior ρ˜T extends at least up to 30.5 GPa, above the entire superconducting (SC) region. In the studied pressure range, the onset of the SC transition reduces by a factor 10 down to Tconset(30.5GPa)=0.23K, while the A—coefficient diminishes monotonically by around 50%.
|
|
Pérez, M., J. J. Blostein, F. A. Bessia, A. Tartaglione, I. Sidelnik, M. S. Haro, S. Suárez, M. L. Gimenez, M. G. Berisso, and J. Lipovetzky. "Thermal neutron detector based on COTS CMOS imagers and a conversion layer containing Gadolinium." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 893 (2018): 157–163.
Abstract: In this work we will introduce a novel low cost position sensitive thermal neutron detection technique, based on a Commercial Off The Shelf CMOS image sensor covered with a Gadolinium containing conversion layer. The feasibility of the neutron detection technique implemented in this work has been experimentally demonstrated. A thermal neutron detection efficiency of 11.3% has been experimentally obtained with a conversion layer of 11.6 μm. It was experimentally verified that the thermal neutron detection efficiency of this technique is independent on the intensity of the incident thermal neutron flux, which was confirmed for conversion layers of different thicknesses. Based on the experimental results, a spatial resolution better than 25 μm is expected. This spatial resolution makes the proposed technique specially useful for neutron beam characterization, neutron beam dosimetry, high resolution neutron imaging, and several neutron scattering techniques.
|
|
Perez, M., F. Alcalde, M. S. Haro, I. Sidelnik, J. J. Blostein, M. Gomez Berisso, and J. Lipovetzky. "Implementation of an ionizing radiation detector based on a FPGA-controlled COTS CMOS image sensor." In 2017 XVII Workshop on Information Processing and Control (RPIC), 1–6. 2017 XVII Workshop on Information Processing and Control (RPIC)., 2017.
Abstract: This work presents the development and implementation of an ionizing radiation detector based on a commercial off the shelf CMOS image sensor and a FPGA. The response of the system was tested in irradiations with gamma photons, beta and alpha particles using different configurations of the image sensor. Finally, we analyze the possible uses of such configurations in the discrimination of events produced by alpha particles in mixed radiation fields.
|
|
Perez, M., J. Lipovetzky, M. Sofo Haro, I. Sidelnik, J. J. Blostein, F. Alcalde Bessia, and M. Gomez Berisso. "Particle detection and classification using commercial off the shelf CMOS image sensors." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 827 (2016): 171–180.
Abstract: Abstract
In this paper we analyse the response of two different Commercial Off The shelf CMOS image sensors as particle detectors. Sensors were irradiated using X-ray photons, gamma photons, beta particles and alpha particles from diverse sources. The amount of charge produced by different particles, and the size of the spot registered on the sensor are compared, and analysed by an algorithm to classify them. For a known incident energy spectrum, the employed sensors provide a dose resolution lower than microGray, showing their potentials in radioprotection, area monitoring, or medical applications.
|
|
Rodr. "Role of anisotropy in the vortex lattice of superconductors high-Q oscillator measurements in 2H-NbSe2 and La1.825Sr0.075CuO4." Physica C: Superconductivity and its applications 229, no. 1-2 (1994): 59–64.
Abstract: Measurement of the response of the flux-line lattice in NbSe2 and La1.825Sr0.075CuO4 show important differences between these two materials. In particular, we have studied the magnetic-field and angular dependence of the response of a high-Q mechanical oscillator in fields of up to 1 T. The features seen in NbSe2 seem to be well explained in terms of a change in the pinning regime, usually termed the “peak effect” in the critical current, using the collective-pinning model of Larkin and Ovchivnikov within Ginzburg-Landau anisotropic theory. On the other hand the behavior found in the high-Tc material LSCO seems to fall naturally into a description which takes into account the possibility of phase transitions in the vortex lattice and the quasi-two-dimensional character of the superconductivity.
|
|
Rodr. "Role of anisotropy in the vortex lattice of superconductors high-Q oscillator measurements in 2H-NbSe2 and La1.825Sr0.075CuO4." Physica C: Superconductivity and its applications 229, no. 1-2 (1994): 59–64.
Abstract: Measurement of the response of the flux-line lattice in NbSe2 and La1.825Sr0.075CuO4 show important differences between these two materials. In particular, we have studied the magnetic-field and angular dependence of the response of a high-Q mechanical oscillator in fields of up to 1 T. The features seen in NbSe2 seem to be well explained in terms of a change in the pinning regime, usually termed the “peak effect” in the critical current, using the collective-pinning model of Larkin and Ovchivnikov within Ginzburg-Landau anisotropic theory. On the other hand the behavior found in the high-Tc material LSCO seems to fall naturally into a description which takes into account the possibility of phase transitions in the vortex lattice and the quasi-two-dimensional character of the superconductivity.
|
|
Sereni, J. G. "Thermodynamic analysis of the quantum critical behavior of Ce-lattice compounds." Philosophical Magazine 93, no. 4 (2013): 409–433.
Abstract: A systematic analysis of low-temperature magnetic phase diagrams of Ce compounds is performed in order to recognize the thermodynamic conditions to be fulfilled by those systems to reach a quantum critical regime or, alternatively, to identify other kinds of low-temperature behavior. Based on specific heat (C m ) and entropy results, three different types of phase diagrams are recognized: (i) with the entropy involved in the ordered phase (S MO) decreasing proportionally to the ordering temperature (T MO); (ii) those showing a transference of degrees of freedom from the ordered phase to a non-magnetic component, with their C m (T MO) jumps (ΔC m ) vanishing at finite temperature; and (iii) those ending at a critical point at finite temperature because their ΔC m do not decrease sufficiently with T MO, producing an entropy accumulation at low temperature. Only those systems belonging to the first case, i.e. with S MO → 0 as T MO → 0, can be regarded as candidates for quantum critical behavior. Their magnetic phase boundaries deviate from the classical negative curvature below T ≈ 2.5 K, denouncing monotonic misleading extrapolations down to T = 0. Different characteristic concentrations are recognized and analyzed for Ce-ligand alloyed systems. In particular, a pre-critical region is identified where the nature of the magnetic transition undergoes significant modifications, with its ∂C m /∂T discontinuity strongly affected by the magnetic field and showing an increasing remnant entropy at T → 0. Physical constraints arising from the third law at T → 0 are discussed and recognized from experimental results.
|
|
Sereni, J. G., J. Roberts, F. Gastaldo, M. Gómez Berisso, and M. Giovannini. "Shastry-Sutherland phase formation in magnetically frustrated Ce2Pd2In1-xSnx alloys." Materials Today: Proceedings 14 (2019): 80–83.
Abstract: Taking profit that the ternary indides Ce2+εPd2-εIn form two branches of solid solutions allowing to access to ferromagnetic (FM, ε > 0) or anti-ferromagnetic (AFM, ε < 0) ground states depending on the relative Ce/Pd concentration 'ε' , we have tested the possibility of a Shastry-Sutherland phase formation by electron doping the trivalent In lattice with tetravalent Sn. Starting from the AFM, ε < 0 side provides the lowest electron concentration conditions increasing the sensitivity to electron doping. For such a purpose low temperature thermal and magnetic properties were investigated on Ce2+εPd2-εIn1-xSnx alloys within the 0 ≤ x ≤ 0.6 range of concentration.
|
|
Seyfarth, G., D. Jaccard, P. Pedrazzini, A. Krzton-Maziopa, E. Pomjakushina, K. Conder, and Z. Shermadini. "Pressure cycle of superconducting Cs0.8Fe2Se2 : A transport study." Solid State Communications 151, no. 10 (2011): 747–750.
Abstract: We report measurements of the temperature and pressure dependence of the electrical resistivity (Ï) of single-crystalline iron-based chalcogenide Cs0.8Fe2Se2. In this material, superconductivity with a transition temperature Tc~30K source develops from a normal state with extremely large resistivity. At ambient pressure, a large “hump†in the resistivity is observed around 200 K. Under pressure, the resistivity decreases by two orders of magnitude, concomitant with a sudden Tc suppression around pc~30K. Even at 9 GPa a metallic resistivity state is not recovered, and the Ï(T) “hump†is still detected. A comparison of the data measured upon increasing and decreasing the external pressure leads us to suggest that the superconductivity is not related to this hump.
|
|
Sidelnik, I., H. Asorey, N. Guarin, M. S. Durán, F. A. Bessia, L. H. Arnaldi, M. G. Berisso, J. Lipovetzky, M. Pérez, M. S. Haro et al. "Neutron detection capabilities of Water Cherenkov Detectors." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 952 (2020): 161962.
Abstract: In this work we show the neutron detection capabilities of a water Cherenkov detector (WCD). The experiments presented here were performed using a simple WCD with a single photomultiplier tube (PMT) and a 252Cf neutron source. We compared the use of pure water and water with non contaminant additive as the detection volume. We show that fast neutrons from the 252Cf source can be detected over the flux of atmospheric particles background. Our first estimation for the neutron detection efficiency is at the level of (19)% for pure water and (44)% for the water with the additive. We also present the simulation of the response of the WCD to neutrons using a simulated 252Cf source. We implemented a detailed model of the WCD and of the neutron source spectra using Geant 4. The results of our simulations show the detailed mechanism for the detection of neutrons using WCD and support the experimental evidences presented. Since both active volumes studied, H2O pure and with additive, are cheap, non-toxic and easily accessible materials, the results obtained are of interest for the development of large neutron detectors for different applications. Of special importance are those related with space weather phenomena as well as those for the detection of special nuclear materials. We conclude that WCD used as neutron detectors can be a complementary tool for standard neutron monitors based on 3He.
|
|
Sofo Haro, M., F. Alcalde Bessia, M. Pérez, J. J. Blostein, D. F. Balmaceda, M. Gómez Berisso, and J. Lipovetzky. "Soft X-rays spectroscopy with a commercial CMOS image sensor at room temperature." Radiation Physics and Chemistry 167 (2020): 108354.
Abstract: Besides their application in point and shoot cameras, webcams, and cell phones, it has been shown that CMOS image sensors (CIS) can be used for dosimetry, X-ray and neutron imaging applications. In this work we will discuss the application of an ON Semiconductor MT9M001 CIS, in low energy X-ray spectroscopy. The device is a monochromatic front-side illuminated sensor, very popular in consumer electronics. In this work we introduce the configuration selected for the mentioned sensor, the image processing techniques and event selection criteria, implemented in order to measure the X-ray energy in the range from 1-10 keV. Several fluorescence lines of different samples have been resolved, and for first time the line resolution have been measured and analyzed. We achieved a FWHM of 232 eV at 6.4 keV, and we concluded that incomplete charge collection (ICC) of the charge produced by the X-ray contributes to the resolution, being this effect more important at higher X-ray energies. The results analyzed in this work indicate that the mentioned CIS are specially suitable for X-ray applications in which energy and spatial resolutions are simultaneously required.
|
|
Vanacken, J., S. Libbrecht, M. Maenhoudt, C. Van Haesendonck, E. Osquiguil, and Y. Bruynseraede. "The magnetic moment relaxation in oxygen-deficient YBa2Cu3Ox." Physica C: Superconductivity and its applications 197, no. 1-2 (1992): 9–14.
Abstract: The magnetic moment relaxation in polycrystalline YBa2Cu3Oxmaterial has been studied using zero-field-cooled measurements. The temperature dependence of the relaxation rate shows a field-dependent maximum. When the oxygen content is reduced, the maximum shifts towards lower temperatures. This shift is directly related to a decrease of the intragrain critical current density in the oxygen-deficient material, inducing a decrease of the field H* for complete flux penetration. The characteristic activation energies for depinning in the oxygen-deficient material are below 20 meV.
|
|
Zarate, J. J., and H. Pastoriza. "Correction algorithm for the proximity effect in e-beam lithography." In Micro-Nanoelectronics, Technology and Applications, 2008. EAMTA 2008. Argentine School of, 38–42., 2008.
Abstract: e-beam lithography is a technique capable of fabricate sub-micrometer planar structures. The ultimate resolution in this technique is limited mainly by the proximity effect where the dose accumulated in one spacial point is affected by the irradiated dose in its neighborhood. The relevance of this effect in one particular pattern strongly depends on its geometry, the sensitivity of the resist and the physical characteristics of the substrate. In this work we present a numerical algorithm to calculate the nominal dose needed to be applied in each point of the geometry that results in an optimal net dose for an efficient pattern transfer.
|
|