|
Alcalde Bessia, F., D. Flandre, N. André, J. Irazoqui, M. Pérez, M. Gómez Berisso, and J. Lipovetzky. "Ultra Low Power Ionizing Dose Sensor Based on Complementary Fully Depleted MOS Transistors for Radiotherapy Application." IEEE Transactions on Nuclear Science (2019): 1.
Abstract: We evaluate the use of the thick buried oxide (BOX) of Fully Depleted Silicon-on-Insulator (FD-SOI) transistors for Total Ionizing Dose (TID) measurements in a radiotherapy application. The devices were fabricated with a custom process in UniversitC) Catholique de Louvain (UCL) which allows to make accumulation mode PMOS transistors and inversion mode NMOS transistors. We characterized the temperature behavior of these devices and the response under X-ray radiation produced by an Elekta radiotherapy linear accelerator, and compared the obtained dose sensitivity to other published works. Taking advantage of these devices, an ultra low power MOS ionizing dose sensor, or MOS dosimeter, with inherent temperature compensation is presented. This dosimeter achieved a sensitivity of 154 mV/Gy with a temperature error factor of 13 mGy/°C and a current consumption below 1 nA.
|
|
|
Alcalde Bessia, F., D. Flandre, N. André, J. Irazoqui, M. Pérez, M. Gómez Berisso, and J. Lipovetzky. "Fully-Depleted SOI MOSFET Sensors in Accumulation Mode for Total Dose Measurement." In 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC), 1–3. 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC)., 2018.
Abstract: Fully Depleted Silicon-on-Insulator (FD-SOI) transistors fabricated with a custom process in Université Catholique de Louvain (UCL) were irradiated with X-rays using an Elekta Synergy radiotherapy linear accelerator. I-V curves of FD-SOI are sensitive to charges produced in the buried oxide (BOX) by ionizing radiation, so it is possible to use these devices as radiation dosimeters. In this work, we evaluated the use of thick BOX back-gate transistors for Total Ionizing Dose (TID) measurement using different bias conditions and we obtained a maximum sensitivity of 191 mV/Gy for devices operating in accumulation mode.
|
|