Alcalde Bessia, F., M. Pérez, M. Sofo Haro, I. Sidelnik, J. J. Blostein, S. Suárez, P. Pérez, M. Gómez Berisso, and J. Lipovetzky. "Displacement Damage in CMOS Image Sensors After Thermal Neutron Irradiation." IEEE Transactions on Nuclear Science 65, no. 11 (2018): 2793–2801.
Abstract: In this paper, CMOS image sensors were exposed to thermal neutrons observing an increase in the dark signal of many pixels. The effect was found to be similar to the damage caused by alpha particles irradiation. Rutherford backscattering spectroscopy (RBS) and SIMNRA simulation were used to confirm that the sensors contain boron in the insulation layers. The damage produced by thermal neutrons is explained as displacement damage caused by alpha particles and lithium-7 ions in the silicon active volume of the sensors after boron-10 thermal neutron capture.
|
Lipovetzky, J., A. Cicuttin, M. L. Crespo, M. Sofo Haro, F. Alcalde Bessia, M. Pérez, and M. Gómez Berisso. "Multi-spectral X-ray transmission imaging using a BSI CMOS Image Sensor." Radiation Physics and Chemistry 167 (2020): 108244.
Abstract: In this work we study the performance to obtain X-ray images of a Back Side Illuminated CMOS Image Sensor, the Omnivision OV5647, empoying X-rays from tube with a palladium anode and voltages from 7.5 keV to 50 keV. The performance is compared with the Timepix detector operating in the Time Over Threshold mode. False color images are obtained using data from different energies and brightnesses, to fussion different information on the same picture. The different attenuations are analyzed and discussed in terms of the charge detection efficiency of the CMOS sensor, measured using Fluorescence X-rays and gamma rays from calibrated sources.
|
Perez, M., J. Lipovetzky, M. Sofo Haro, I. Sidelnik, J. J. Blostein, F. Alcalde Bessia, and M. Gomez Berisso. "Particle detection and classification using commercial off the shelf CMOS image sensors." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 827 (2016): 171–180.
Abstract: Abstract
In this paper we analyse the response of two different Commercial Off The shelf CMOS image sensors as particle detectors. Sensors were irradiated using X-ray photons, gamma photons, beta particles and alpha particles from diverse sources. The amount of charge produced by different particles, and the size of the spot registered on the sensor are compared, and analysed by an algorithm to classify them. For a known incident energy spectrum, the employed sensors provide a dose resolution lower than microGray, showing their potentials in radioprotection, area monitoring, or medical applications.
|
Sofo Haro, M., F. Alcalde Bessia, M. Pérez, J. J. Blostein, D. F. Balmaceda, M. Gómez Berisso, and J. Lipovetzky. "Soft X-rays spectroscopy with a commercial CMOS image sensor at room temperature." Radiation Physics and Chemistry 167 (2020): 108354.
Abstract: Besides their application in point and shoot cameras, webcams, and cell phones, it has been shown that CMOS image sensors (CIS) can be used for dosimetry, X-ray and neutron imaging applications. In this work we will discuss the application of an ON Semiconductor MT9M001 CIS, in low energy X-ray spectroscopy. The device is a monochromatic front-side illuminated sensor, very popular in consumer electronics. In this work we introduce the configuration selected for the mentioned sensor, the image processing techniques and event selection criteria, implemented in order to measure the X-ray energy in the range from 1-10 keV. Several fluorescence lines of different samples have been resolved, and for first time the line resolution have been measured and analyzed. We achieved a FWHM of 232 eV at 6.4 keV, and we concluded that incomplete charge collection (ICC) of the charge produced by the X-ray contributes to the resolution, being this effect more important at higher X-ray energies. The results analyzed in this work indicate that the mentioned CIS are specially suitable for X-ray applications in which energy and spatial resolutions are simultaneously required.
|