Hanta-bearing mice: is their movement diffusive?

Guillermo Abramson
Centro Atómico Bariloche and CONICET, Bariloche, Argentina.

Consortium of the Americas for Interdisciplinary Science, University of New Mexico, Albuquerque, USA.

with L. Giuggioli and V.M. Kenkre

TSOCS 2004 – Porto Alegre
The diffusion paradigm

\[\frac{\partial u(x, t)}{\partial t} = r u (1 - u) + D \nabla^2 u \quad (Fisher, 1937) \]

Epidemics of Hantavirus in *P. maniculatus*

Abramson, Kenkre, Parmenter, Yates (2001-2002)

\[\frac{\partial M_S(x, t)}{\partial t} = bM - cM_S - \frac{M_SM}{K(x)} - aM_SM_I + D_S \nabla^2 M_S, \]

\[\frac{\partial M_I(x, t)}{\partial t} = -cM_I - \frac{M_IM}{K(x)} + aM_SM_I + D_I \nabla^2 M_I, \]
Three categories of wrongfulness

Okubo & Levin, Diffusion and Ecological Problems

Wrong but useful: the simplest diffusion models cannot possibly be exactly right for any organism in the real world (because of behavior, environment, etc). But they provide a standardized framework for estimating one of ecology most neglected parameters: the diffusion coefficient.

Not necessarily so wrong: diffusion models are approximations of much more complicated mechanisms, the net displacements being often described by Gaussians.

Woefully wrong: for animals interacting socially, or navigating according to some external cue, or moving towards a particular place.
The source of the data

Gerardo Suzán & Erika Marcé, UNM

Six months of field work in Panamá (2003)

Zygodontomys brevicauda
Host of Hantavirus Calabazo
Recapture and age

Zygodontomys brevicauda, 846 captures:

411 total mice, 188 captured more than once (2-10 times)

<table>
<thead>
<tr>
<th></th>
<th>J</th>
<th>SA</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>0.22</td>
<td>0.13</td>
<td>0.42</td>
</tr>
<tr>
<td>M</td>
<td>0.00</td>
<td>0.47</td>
<td>0.55</td>
</tr>
<tr>
<td>Total</td>
<td>0.13</td>
<td>0.37</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Recapture probability:

One mouse (SA, F) recaptured off-site, 200 m away

- J: juvenile
- SA: sub-adult
- A: adult
- F: female
- M: male
Recapture and weight

Z. brevicauda

Weight is weight at first capture

- 75 females recaptured
- 113 males recaptured
- 193 females total
- 218 males total

Distribution of weight ⇒

![Graph showing recapture probability and weight distribution for Z. brevicauda](image)
Different types of movement

Adult mice \Rightarrow diffusion within a **home range**

Sub-adult mice \Rightarrow run away to establish a home range

Juvenile mice \Rightarrow excursions from nest

Males and females…
The recaptures

\[\Delta x (m) \]

\[\Delta t \text{ (days)} \]
Individual mouse walks

Z. brevicauda captured ~10 times

\[x(t) \] (m) vs. \(t \) (days)
"Mean" square displacement?

Z. brevicauda captured ~10 times

\[\langle \chi^2 \rangle \]

\(t \) (days)
PDF of individual displacements

The population as an ensemble of walkers

\[P(dx), P(dy) \]

\[dx, dy \]

Gaussian fit

Lorentzian fit

Z. brevicauda, all sites, 434 recaptures

\[<dx> = -0.88 \text{ m} \]

\[\sigma_x^2 = 18.7 \text{ m}^2 \]

\[<dy> = 1.2 \text{ m} \]

\[\sigma_y^2 = 20.5 \text{ m}^2 \]

\[P(dx), P(dy) \]

\[dx, dy \] (m)
PDF of individual displacements

As three ensembles, at three time scales

Z. brevicauda

247 steps
170 steps
17 steps

$P(dx)$

$dt \sim 1\text{day}$

$dt \sim 1\text{month}$

$dt \sim 2\text{months}$
An ensemble of displacements
An ensemble of displacements

...representing the walk of an “ideal mouse”
Ideal mouse walks

Z. brevicauda - 1-day steps

- Average
- Linear fit
 - slope = 686 m²/d
 - $D_1 = 342$ m²/d

\[t \]
Mean square displacement

\[
\langle \Delta x^2 \rangle, \langle \Delta y^2 \rangle (m^2)
\]

\[
\langle \Delta x^2 \rangle, \langle \Delta y^2 \rangle \quad (t \text{ (days)})
\]
Confinements to diffusive motion

- Home ranges
- Capture grid
- Combination of both
Confinements to diffusive motion

- Home ranges
 \[\langle x^2 \rangle = \frac{L^2}{12} \left\{ 1 - \frac{L}{\alpha \pi^3} \sum_{n=1}^{\infty} \frac{(-1)^{n+1} \sin(n \pi \alpha / L)}{n^3} e^{-\frac{(2n\pi)^2 D_t}{L^2}} \right\} \]

- Capture grid
 \[\langle x^2 \rangle = 2D_t \left\{ 1 - \frac{Ge^{-G^2/16D_t}}{\sqrt{4\pi D_t} \text{ erf} \left(\frac{G}{4\sqrt{D_t}} \right)} \right\} \]

- Combination of both
Mean square displacement

\[\frac{\langle x^2 \rangle}{(G^2/12)} = \frac{L}{G} \]

- \(L = G \)
- \(L > G \)
- \(L = \infty \)
- \(L < G \)
In summary

- Mouse “transport” is more complex than diffusion
- Different subpopulations with different mechanisms
 - Existence of home ranges
 - Existence of “transient” mice
- Limited data sets can be used to derive some statistically sensible parameters
- Possibility of analytical models
- Analysis of other systems (New Mexico…)
REFERENCES

These were the initial papers:

The present analysis has been submitted as:

Diffusion and home range parameters from rodent population measurements in Panama, Giuggioli, Abramson, Kenkre, Suzán, Marcé and Yates, (2004).