Entanglement and irreversibility on the light-cone

Gonzalo Torroba
Centro Atómico Bariloche
Argentina

It from Qubit Workshop. Bariloche, 2017
QFT has emerged as the framework for quantum many body systems, in high energy and CM physics.

Fundamental problem: given a microscopic QFT, find its long distance dynamics

⇒ **Systematic approach: the renormalization group (RG)**

- Physics at a scale Λ described by EFT.
- Integrate out d.o.f. with $E > \Lambda$
- Produces a flow in the space of couplings

$$E \frac{dg_I}{dE} = \beta_I(g)$$
Think about “space of QFTs”, RG flows & fixed points

Crucial property: *irreversibility of the RG*

Intuition: Loss of information about UV d.o.f.

E.g. C-thm

“Irreversibility” of the flux of the renormalization group in a 2D field theory

A. B. Zomolodchikov

L. D. Landau Institute of Theoretical Physics, Academy of Sciences of the USSR
Results on RG evolution as dissipative process:

0 + 1 ✓ *g*-theorem [Affleck, Ludwig; Friedan, Konechny …]
1 + 1 ✓ *c*-theorem [Zamolodchikov; Cappelli, Friedan …]
2 + 1 ✓ *F*-theorem [Myers, Sinha; Jafferis et al; Casini, Huerta]
3 + 1 ✓ *a*-theorem [Cardy; Komargodski, Schwimmer …]
any D ✓ holographic C-thms [Freedman et al; Myers, Sinha, …]

Use quite different tools: unitarity, dilaton, entanglement …

⇒ Underlying principle for irreversibility of the RG?
⇒ Useful way of comparing QFTs, and defining distance in theory space?
⇒ What happens in D>4?
Goal of the talk:

Review recent progress on understanding the RG using quantum information theory.

Based on collaborations with Horacio Casini, Ignacio Salazar & Eduardo Testé, at Bariloche

Outline:

A. Relative entropy on the light-cone
B. Irreversibility & Markov property
C. Work in progress & future directions
A. Relative entropy on the light-cone

- Need: measure for \(N_{\text{dof}} \) along the RG & way of comparing theories at different scales

- QIT offers an appropriate framework for this. To make progress, start from the simplest possible RG:

Boundary RG flows

2d CFT

BCFT characterized by \(g \);
measures \(N_{\text{dof}} \) at boundary

\[
S_{\text{thermal}} = \frac{\pi c}{3} TL + \log g
\]

E.g. Kondo model

[Casini, Salazar, GT 2016]
“g-theorem”: g decreases along boundary RG flows

RG due to relevant boundary deformation

$$S = S_{BCFT} + \int dx_0 \lambda \mathcal{O}(x)$$

$$\log g_{UV} > \log g_{IR}$$

[Affleck, Ludwig; Friedan, Konechny]

Understand using QIT? g measured by EE:

[Cardy]

$$S(r) = \frac{c}{6} \log \frac{r}{\epsilon} + \log g$$

$$\Rightarrow \log \frac{g_{IR}}{g_{UV}} = S_{IR}(r) - S_{UV}(r)$$

Monotonicity properties of ΔS?
Suggests using the relative entropy!

Define the reduced density matrices on interval r:

$$\sigma = \text{tr}_V |0\rangle\langle 0| : \text{UV BCFT}$$

$$\rho : \text{theory w/relevant deformation}$$

Same operator content. Evolve w/different action

Then

$$S_{\text{rel}}(\rho|\sigma) = \text{tr}(\rho \log \frac{\rho}{\sigma})$$

✓ measure of distance between states

✓ Central in QIT and various physics appl's

CFT modular Hamiltonian

$$H = -\log \sigma$$

$$\text{tr}(\rho H) - \text{tr}(\sigma H)$$

$$S(\rho) - S(\sigma) = \log \frac{g(r)}{g(0)}$$

Irreversibility of the RG, measured by ΔS, could then follow from monotonicity and positivity of relative entropy. But ...

This simple idea does not quite work: generically $\Delta \langle H \rangle \gg \Delta S$
Then try to minimize $\Delta \langle H \rangle$. For this, change Cauchy surface:

$$\Delta S \text{ is indep of } \Sigma$$

but

$$\Delta H = \int_{\Sigma} ds \, \eta^\mu \xi^\nu \Delta \langle T_{\mu\nu} \rangle$$

normal to Σ

CKV that keeps interval fixed

• **static limit** $x^0 = 0$, $H = 2\pi \int_0^r dx^1 \frac{r^2 - (x^1)^2}{2r} T_{00}(x^1)$

Since $\Delta \langle T_{00} \rangle \sim \delta(x^1) \Rightarrow \Delta \langle H \rangle \sim r$ relative entropy distinguishes too much

• **null limit** $x^- = -r$, $H = 2\pi \int_{-r}^r dx^+ \frac{r^2 - (x^+)^2}{2r} T_{++}(x^+)$

$\Delta \langle T_{++} \rangle \sim \delta(x^+ + r) \Rightarrow \Delta \langle H \rangle = 0$ boundary sits in high temperature region

Then $S_{\text{rel}}(\rho_r | \sigma_r) = -\log \frac{g(r)}{g(0)}$ & $\frac{dS_{\text{rel}}(r)}{dr} \geq 0 \Rightarrow g'(r) \leq 0$
Apply this approach to RG flows in d-dims

\[S = S_{\text{CFT}} + \int d^d x \lambda \mathcal{O}(x) \]

\[\text{dim } \Delta < d \]

Compare both theories using \(S_{\text{rel}} \) and minimize \(\Delta \langle H \rangle \) by taking the null limit

properties of CFT stress tensor imply

\[\Delta \langle T_{\mu \nu} \rangle \Sigma \sim \lambda^2 \epsilon^{d-2\Delta} (\eta_{\mu} \eta_{\nu} - \frac{g_{\mu \nu}}{d}) \]

\[\Rightarrow \Delta \langle H \rangle \Sigma \sim \lambda^2 \epsilon^{d-2\Delta} \int_{\Sigma} \eta^\mu \xi_\mu \]

- \(\Delta \langle H \rangle_{x^0 \text{ const}} \sim \lambda^2 \epsilon^{d-2\Delta} r^d \)
- \(\Delta \langle H \rangle_{\text{null}} \sim \lambda^2 \epsilon^{d+2-2\Delta} r^{d-2} \) area law! (high T)
For $\Delta < \frac{d+2}{2}$, $\Delta \langle H \rangle_{\text{null}} = 0 \Rightarrow S_{\text{rel}}(\rho_r | \sigma_r) = S(\sigma_r) - S(\rho_r)$

Monotonicity of relative entropy then implies:

• $d = 2$: $S_{\text{rel}}(r) \approx \frac{1}{3}(c_{UV} - c_{IR}) \log(mr) \Rightarrow c_{UV} > c_{IR}$

C-theorem

• $d > 2$: $S_{\text{rel}}(r) \approx (\mu_{UV} - \mu_{IR}) r^{d-2} \Rightarrow \mu_{UV} > \mu_{IR}$

$$\approx -\Delta \left(\frac{1}{4G_N} \right) r^{d-2}$$

“area theorem”

Lessons so far:

✓ S_{rel} on light-cone provides useful statistical distance in QFT
✓ Quantum-information meaning for Δg, Δc, $\Delta \mu$
✓ Irreversibility of RG in terms of increased distinguishability or information loss
B. Irreversibility & Markov property

[Casini, Testé, GT, 2017]

For a CFT in d-dims, consider the EE on a sphere:

$$S(r) = \mu_{d-2} r^{d-2} + \mu_{d-4} r^{d-4} + \ldots + \left\{ (-1)^{d/2-1} 4A \log\left(\frac{r}{\epsilon}\right) \right\} (-1)^{[(d-1)/2]} F$$

Irreversibility of RG: look for inequalities in ΔA, ΔF

Requires positivity of higher derivatives of $\Delta S = S(\rho) - S(\sigma)$

Suggests looking at multiple regions. We now argue that for a CFT and regions with surface on light-cone, the SSA is saturated

$$S_\sigma(A) + S_\sigma(B) - S_\sigma(A \cap B) - S_\sigma(A \cup B) = 0$$

$$\Rightarrow \Delta S(A) + \Delta S(B) - \Delta S(A \cap B) - \Delta S(A \cup B) \geq 0$$
Focus first on null plane and then map to light-cone

Quick argument: entropy S_γ for region w/boundary $x^+ = \gamma(y)$ should be invariant under boosts $x^+ \rightarrow \lambda x^+$.

Taking $\lambda \rightarrow 0 \Rightarrow S_\gamma$ indep of $\gamma \therefore S_{\gamma_A} + S_{\gamma_B} = S_{\gamma_A \cup \gamma_B} + S_{\gamma_A \cap \gamma_B}$
Conformal map to light-cone:

$$r^- = r - t = \gamma(\Omega)$$

- Only dependence on the curve can come from the cutoff
- This has to be local and extensive
- Terms classified using Lorentz inv

$$\Rightarrow S_\gamma = \int d^{d-2}\Omega \ f(\gamma(\Omega), \epsilon)$$

e.g. $d=4 = \int d^2\Omega \left\{ \alpha_1 \frac{\gamma^2}{\epsilon^2} + \alpha_2 \left(\log \frac{\gamma}{\epsilon} - \frac{1}{2} \left(\frac{\nabla \gamma}{\gamma} \right)^2 \right) + \ldots \right\}$

Hence ray by ray the terms in the SSA inequality cancel out and we get a saturation of SSA.
Markov property of the vacuum

We now discuss a complementary perspective

SSA saturation ⇔ \[\log \rho_{A \cup B} = \log \rho_A + \log \rho_B - \log \rho_{A \cap B} \]

✓ This is called a quantum Markov state
✓ Tracing out a subsystem becomes a reversible process
✓ Roughly, no entanglement over different null lines

• Markov property also follows from result for modular Hamiltonian

\[H_\gamma = 2\pi \int d^{d-2}y \int dx^+ (x^+ - \gamma(y))T_{++} \]

Rindler result, null line by line
Follows from OPE of twist operators and from algebraic QFT methods

See also [Lashkari; Faulker et al]
Using the geometric setup of [Casini, Huerta, 2012], consider SSA for $\Delta S'$ for boosted spheres on light-cone

- $N \to \infty$ boosted spheres
- intersections and unions give “wiggly” spheres.
- Problem: unlike $d=3$, for general d
 \[
 \lim_{N \to \infty} S'_{\text{wiggly}} \neq S'_{\text{sphere}} \quad \text{in SSA combination}
 \]

Crucial role of Markov property: in SSA formula

Differences between wiggly and regular spheres are UV as $N \to \infty$
Hence in SSA for $\Delta S'$, $\Delta S'_{\text{wiggly}} \to \Delta S'_{\text{sphere}}$
Repeated application of SSA:

\[
\Delta S(\sqrt{r R}) \geq \frac{1}{N} \sum_{k=1}^{N} \Delta S_k \approx \int_{r}^{R} d\ell \beta(\ell) \Delta S(\ell)
\]

union of intersection of k spheres
density of spheres of radius \(\ell \)

As \(R \to r \), \(r \Delta S''(r) - (d - 3) \Delta S'(r) \leq 0 \)

Unifies \(c, F \) and \(a \) theorems, and predicts new inequalities in higher \(d \)

Recall

\[
S(r) = \mu_{d-2} r^{d-2} + \mu_{d-4} r^{d-4} + \ldots + \left\{ \begin{array}{l}
(-1)^{d/2-1} 4A \log(r/\epsilon) \\
(-1)^{(d-1)/2} F
\end{array} \right.
\]

\(d = 2 : (r \Delta S'(r))' \leq 0 \Rightarrow \Delta c(r) = c(r) - c_{UV} = r \Delta S'(r) \)

\(d = 3 : \Delta S''(r) \leq 0 \Rightarrow \Delta F(r) = r \Delta S'(r) - \Delta S(r) \)

\(d = 4 : r S''(\rho) - S'(\rho) \leq \frac{8A_{UV}}{r} \Rightarrow A_{IR} \leq A_{UV} \)

entropic a-thm

\(\text{general } d : \frac{d}{dr} \left(\frac{\Delta S'}{r^{d-3}} \right) \leq 0, \lim_{r \to \infty} \Delta \mu_{d-4} \geq 0 \)

renormalization of gravitational terms
C. Future directions

• **Work in progress:** It seems previous arguments for independence on curve $\gamma(y)$ also work for all Renyi entropies:

\[
S_n(A) + S_n(B) - S_n(A \cap B) - S_n(A \cup B) = 0
\]

Much stronger than Markov. CFT vacuum behaves as product state over null cone. It is possible to characterize *all entropies* on light-cone. Consequences?

• **C-theorems in higher dimensions? Monotonic fc. in d=4?**

• **Applications of simple entanglement structure on light-cone. QNEC, generalized second law, monotones, …**